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ABSTRACT

L-cysteine enhanced the analytical signal in the hydride generation-

atomic fluorescence spectrometric determination of germanium. In addi-

tion, it reduced or eliminated interferences from coexistent ions such

as Cr (VI), Se4+, Te4+, Pb2+, Cu2+, and Ni+2 in aqueous analyte

solutions. With L-cysteine, the tolerable limits for interferent ions were

determined for Cr (VI), Se4+, Te4+, Pb2+, Cu2+, Ni+2, Co2+, Zn2+, Fe3+,

As3+, Sb3+,Pd2+, Au3+, Bi3+, and Pt2+. The proposed method was used

for the determination of germanium in seven geological references

samples, with analytical results in good agreement with the certified
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values. The limit of detection of the method was 0.38 mg/L (equivalent

to 0.01mg/g in solid samples, assuming a sample weight of 0.5 g), and

the relative standard deviation for the sample analysis ranged from

1.4% to 7.3%. The method can be used for the analysis of geological

samples for germanium with concentrations ranging from 0.01mg/g to

100 mg/g.

Key Words: Germanium; Hydride generation; Atomic fluorescence

spectrometry; L-Cysteine; Geological samples; Signal enchancement.

INTRODUCTION

Hydride generation-atomic fluorescence spectrometry (HG-AFS) has

the major advantages of simple spectra, high sensitivity, low limits of

detection (0.001 mg/L to 1 mg/L) which varies with analyte elements), high

precision and accuracy, and relatively wide linear dynamic ranges (3 orders

of magnitude). The commercialization of HG-AFS instruments has been a

great success in China in recent years, although the worldwide commer-

cialization of HG-AFS is not yet a reality, as opposed to the case of electro-

thermal atomic absorption spectrometry (ETAAS). With a commercial HG-

AFS instrument, eleven elements can now be routinely measured with vapor

generation, mainly hydride generation, techniques. Some instruments have

two-channel capability, and can measure two elements simultaneously. The

limits of detection (LODs) are at least at sub ng/mL or better, for example,

several picograms per milliliter for Hg and Cd, which are better than those by

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and

equivalent to or better than those by ETAAS and HG-ICP-AES. The

instrumental and running costs compete very well with ICP-AES and ETAAS.

Therefore, HG-AFS has been used for the determination of these trace

elements in various samples.[1] It is possible to use this kind of instrument to

determine additional elements via other volatile compound generation

techniques, for example volatile metal derivatives.[2]

Germanium is an important trace element in the study of geochemistry.

The germanium concentration is usually very low in many real samples

including geological samples. Consequently, a preconcentration and/or

separation step is usually employed in the determination of germanium,

otherwise a very sensitive instrumental method is required for the

measurements.[3 – 5] Besides HG-AFS, HG-ICP-AES,[6,7] HG-ICP-MS (mass

spectrometry)[8] and HG-AAS (atomic absorption spectrometry)[9] have been

used for the determination of germanium in geological samples.[6 – 9] Among

these methods, HG-AFS instruments are simple, and their instrumental and
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running costs are relatively low, though not necessarily higher detection

capability. Like ETAAS, however, the multielememt capability of HG-AFS

is very limited, compared to the ICP techniques.

In the HG atomic spectroscopic techniques (HG-AS), gaseous phase

and liquid phase chemical interferences still exist although the measure-

ments are conducted after the analyte hydrides are separated from the

sample matrices.[10,11] Sometimes, therefore, a separation step such as

precipitation is still needed for the elimination of the matrix interfer-

ences.[12] It is interesting to note that the HG-DCP-AES (hydride

generation-direct current plasma-atomic emission spectrometry) signals of

arsenic, antimony, germanium, tin, and lead can be significantly enhanced

by separately aspirating a solution of easily ionized elements into the DCP

when the hydrides are atomized and excited inside the plasma.[13]

Apparently, a more convenient way is desired to eliminate the interferences

and meanwhile to enhance the sensitivity. In recent years, it has been found

that L-cysteine can enhance the analytical signal of HG-AS for some

elements, and suppress the matrix interferences.[14 – 18] This effect of

L-cysteine has not yet been tested for the determination of any elements in

usually complicated geological samples by HG-AFS. In this paper,

therefore, the versatile reagent L-cysteine was used to enhance the HG-

AFS signal and to eliminate the interference in the analysis of geological

samples for germanium. The experimental conditions were optimized first.

Together with the enhancement effect, the interference of 16 coexisting ions

was studied in detail. Finally, the proposed analytical procedure was

applied to the determination of germanium in seven geological reference

samples, with germanium levels ranging from 0.4 mg/g to 12.4 mg/g in the

solid samples.

EXPERIMENTAL

Instrument and Reagents

A commercial atomic fluorescence spectrometer (model: AFS-2202,

Beijing Haiguang Instrument Co., Beijing, P. R. China) was used for the

experiments described in this paper. The instrument can work in a simul-

taneous two-channel mode or one channel mode. The light source is coded

hollow cathode lamps (HCLs), i.e., two HCLs are pulse-powered alter-

nately, providing emission lines from the two HCLs, alternately. The

emission light beams from the HCLs are focused on to a quartz atomizer

for the excitation of atomic fluorescence of analyte atoms. In this experi-

ment, a germanium high intensity HCL (Beijing Institute of Vacuum and
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Electronics, Beijing, P. R. China) was used. A hydride-generator is used to

generate the hydride of the analyte element, which is subsequently intro-

duced to the quartz atomizer with an argon flow. The hydrogen flowing

with argon and the hydride produced from the hydride-generation reaction,

is ignited with an electrically heated wire to form an argon-hydrogen flame

in the quartz atomizer for the atomization of the hydrides. The resultant

fluorescence is focused, via a non-dispersive optical system, onto a photo-

multiplier tube (PMT), and followed by the amplification of the signal and

data processing with a computer. The hydride generation atomic fluores-

cence spectrometer (HG-AFS) is routine for the measurement of 11 ele-

ments, i.e., As, Sb, Bi, Hg, Se, Te, Sn, Ge, Pb, Zn, and Cd. Usually, NaBH4

or KBH4 is used as a reducing reagent. The HG system is a manufacturer-

designed, computer-programmable, intermittent hydride generation reactor,

as shown in Figure 1 schematically. The optimized instrumental conditions

for the determination of germanium are listed in Table 1.

Figure 1. A schematic diagram of the intermittent hydride generation reactor/

sampler. 1—pump; 2—valve; 3—reactor; 4—gas/liquid separator.

Table 1. Optimal-working program for the intermittent flow sampler/reactor.

Step

Rotation

speed (rps) Time (s)

Repetition

time Reading Stop

0 80 8 1 N N

1 0 5 1 N N

2 100 15 1 Y N

3 0 5 0 N Y
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A germanium working standard solution (1 mg/L) was prepared from a

stock germanium standard solution (10 mg/L), both in the medium of 0.5%

NaOH. KBH4, 25 g/L in the medium of 0.10 mol/L KOH, was freshly

prepared daily prior to use. All the reagents used in the experiment were of

analytical grade or better. Sub-boiled de-ionized water was used for

cleaning and dilutions. A series of standard solutions with concentrations of

1, 3, 5, 10, 50, 100 Ge mg/L in the medium of 4 mol/L H3PO4+1 mol/L

H2SO4+0.09% (m/v) L-cysteine were prepared from further dilution of the

working standard solution.

Sample Preparation

Samples of 0.1 to 0.5 g were accurately weighed into Teflon crucibles

with an analytical balance. To each of the samples, 10 ml HF, 5 ml HNO3,

and 1 ml 50% H2SO4 were added, then the crucibles with covers were put

on a hot plate. The crucibles were heated gradually from low temperature to

high temperature (around 250 �C), and eventually to the point that the white

fumes of sulfuric acid appeared. Then, the crucibles were removed from the

hot plate to cool down before their walls and covers were rinsed with sub-

boiled deionized water. The crucibles were reheated to the white fume

point. After cooling, 5 ml of 8 mol/L H3PO4 was added. Again, the

crucibles were put back onto the plate, and heated to boil gently for

about one minute. Finally, 2.5 ml of 0.35% (m/v) solution of L-cysteine

was added, and the sample solutions were quantitatively transferred to 10

ml test tubes and diluted to the mark with sub-boiled deionized water

when the crucibles were cooled down. The supernatant was used for the

instrumental measurements.

RESULTS AND DISCUSSION

Selection of Acid-Medium

The effects of hydrochloric acid, sulfuric acid and phosphoric acid

were investigated on the atomic fluorescence signal of germanium. The

results were shown in Figure 2. It can be seen that phosphoric acid was the

best and hydrochloric acid the worst in terms of signal size. Since sulfuric

acid was involved in the sample digestion step, a mixed acid solution of 4

mol/L H3PO4 and 1 mol/L H2SO4 was selected for the rest of the work. In

addition, phosphoric acid is helpful in restraining the interference from

alkaline earth metals, iron, mercury and molybdenum ions.
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Amount of KBH4

The effect of the amount of potassium borohydride, KBH4, on the

fluorescence intensity of germanium was carefully tested. The experimental

results showed that the optimal range of the reducing reagent was 25 to

30 g/L of KBH4. The concentration of KBH4 used in later experiments was

25 g/L in the basic medium of 0.10 mol/L KOH.

Amount of L-Cysteine

It was found that the fluorescence intensity of germanium reached a

maximum when 2.5 ml of 0.35% (m/v) of L-cysteine was added to the

analyte solution. The signal was enhanced by about 30%. Although this

enhancement effect is not impressive, a further benefit of using L-cysteine

is its capability of suppressing interferences from coexisting ions, as

detailed in the next section. It is believed that L-cystein reacts with

BH4
� through -SH and forms a complex, BH3-S-R� , which increases the

formation rate of germanium hydride and therefore the atomic fluorescence

intensity of germanium.[15]

Interference of Co-existing Ions

In the determination of germanium by HG-AFS, the interference is

mainly from the elements of Groups VIIIB, IB and IIB in the periodic table

of elements. In the early phase of hydride formation, these elements form

highly dispersed free metal atoms (preferential reduction of the interferent

Figure 2. Effects of acids and their concentrations on the germanium atomic

fluorescence signal. ^H3PO4; .H2SO4; and ~HCl.
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ions) or metal boronide precipitates, which adsorb or catalytically de-

compose germanium hydride, thus suppressing the atomic fluorescence of

germanium.[11] Other hydride-forming elements, such as arsenic, antimony,

tin and selenium, may form compounds with other elements including

germanium in the gaseous phase of the low-temperature argon-hydrogen

flame, and interfere with the determination of germanium.[10,19]

It has been reported that L-cysteine can enhance the atomic

fluorescence of germanium, and suppress the chemical interferences from

transition metal ions such as Cu2+, Co2+, and Ni2+.[14] The interferences

from Cr (VI), Pd2+, Te4+, As3+, and Sb3+were studied in detail. When the

amounts of these elements exceeded the tolerable limits, 4, 4, 6, 15, and 3

mg for Cr (VI), Pd2+, Te4+, As3+, and Sb3+, respectively, the interferences

were significant. When L-cysteine was used, the tolerable limits for the

coexisting ions, Cr (VI), Pd2+and Te4+, were dramatically increased to 300,

120, and 300 mg, respectively. This resulted from the high reducing

capability of L-cysteine (E0 = 0.076 V), which reduces Cr (VI), Pd2+and

Te4+to Cr (III), Pd0 and Te0 before KBH4 reduces the analyte element, thus

eliminating the interference. However, with L-cysteine, the tolerable limit

for As3+and Sb3+were only doubled to 30 and 6 mg, respectively. This is

probably because the L-cysteine cannot reduce As3+and Sb3+to As0 and Sb0.

As shown in Figure 3, Sb3+ leads to positive interference as oppose to other

interferent ions, for which the mechanism is still unknown. With

L-cysteine, the tolerable limits for other coexisting ions, Cu2+, Co2+,

Figure 3. The interference of As3+ and Sb3+ with the measurements of the atomic

fluorescence signal of germanium. ^As3+; . As3+ with L-cysteine; ~Sb3+; and
& Sb3+ with L-cysteine.

L-Cysteine Enhanced Hydride Generation 281

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
0
4
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



Ni2+, Pb2+, Zn2+, Fe3+, Au3+, Bi3+, Se4+, Hg2+and Pt2+, were 30 mg, 15 mg,

20 mg, 300 mg, 300 mg, 50 mg, 50 mg, 50 mg, 250 mg, 50 mg and 100 mg,

respectively, with recoveries ranging from 97% to 100%. All the tolerable

limits reported in the paper were based on the analyte amount of 0.40 mg

Ge in 10 ml analyte solution. However, it should be pointed out that the

absolute ratio of interference to analyte element is not always the most

important consideration, since interferences can often be eliminated by

dilution in many applications of atomic spectrometric techniques if the

sensitivity is high enough.[20,21]

Limit of Detection, Precision, Linear Dynamic
Range, and Sample Analysis

The limit of detection (LOD), 0.38 mg/L, was obtained by 12

measurements of a blank solution, and calculated based on three times

the standard deviation of the blank measurements. This LOD is equivalent

to 0.01mg/g in solid samples, assuming a sample weight of 0.5 g. The

relative LOD for germanium is better than that by ETAAS (0.8 mg/L,

assuming 20 mL sampling volume) and that by ICP-AES (20 mg/L). It

should be pointed out that the instrumental and the running costs of the

HG-AFS are much lower than ICP-AES or ETAAS. The six-point

calibration curve can be linear, at least, up to 100 mg/L, with a correlation

coefficient of 0.9995. The precision of the proposed procedure was 1.7%,

based on the relative standard deviation of 12 measurements of a real

sample (GBW07105). The method was used for the analysis of seven

certified geological reference materials, with the analytical results listed in

Table 2. Analytical results of germanium for standard reference geological samples.

Sample no. Certified (mg/g) Found* (mg/g)

RSD

(%)**

RE

(%)***

GBW07305 1.4 ± 0.4 1.39 ± 0.02 (4) 1.4 � 1

GBW07310 0.4 ± 0.06 0.46 ± 0.03 (3) 6.5 15

GBW07404 1.9 ± 0.4 1.87 ± 0.07 (4) 3.5 � 2

GBW07103 0.98 ± 0.23 0.91 ± 0.07 (4) 7.3 � 7

GBW07105 3.1 ± 0.4 3.25 ± 0.07 (3) 2.1 5

GBW07234 0.93 0.89 ± 0.02 (3) 2.8 � 4

GBW07239 12.4 12.6 ± 0.23 (4) 1.8 2

*average ± standard deviation (number of measurements).

**RSD = relative standard deviation.

***RE = relative error.
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Table 2. The relative standard deviation for the analysis of the seven

samples was found to be from 1.4% to 7.3%. The Student’s t-test at 95%

confidence level shows that there is no significant difference between the

certified values and the measured values by the proposed method. The

relative errors are less than 7% for all the samples except for GBW07310,

which has the lowest germanium concentration. Assuming that the maxi-

mum and minimum sample weights are 0.5 g and 0.1 g, respectively, and

that 10 times dilution is allowed for samples of high germanium con-

centration, the method is suitable for the determination of germanium in

geological samples with concentrations ranging from 0.01 to 100 mg/g,

estimated from the linear range of the calibration curve.
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